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In this paper we propose a new image randomness measure using Shannon entropy over
local image blocks. The proposed local Shannon entropy measure overcomes several weak-
nesses of the conventional global Shannon entropy measure, including unfair randomness
comparisons between images of different sizes, failure to discern image randomness before
and after image shuffling, and possible inaccurate scores for synthesized images. Statistical
tests pertinent to this new measure are also derived. This new measure is therefore both
quantitative and qualitative. The parameters in the local Shannon entropy measure are fur-
ther optimized for a better capture of local image randomness. The estimated statistics and
observed distribution from 50,000 experiments match the theoretical ones. Finally, two
examples are given, applying the proposed measure to image randomness among shuffled
images and encrypted images. Both examples show that the proposed method is more
effective and more accurate than the global Shannon entropy measure.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Since the information age began in the late 1970s, the digital world has kept evolving on a nearly daily basis. More par-
ticularly, the past 10 years have seen an impressive growth of capabilities of electronic devices as well as their usage in vir-
tually all walks of life (i.e. smartphones, digital music players, home robotic devices, electronic readers, etc.). These devices
highlight the fast increase in computational and storage facilities of modern electronics. Compared to the rapid development
of electronic devices and computer computational capacities, contemporary data encryption technologies are not very dif-
ferent from those of 10 years ago: many data encryption algorithms in use 10 years ago are still in use today, such as the
data encryption standard (DES) [2] dating from 1976, the Blowfish cipher [7] from 1993, the Twofish [46] cipher from
1998, and the advanced encryption standard (AES) [3] from 1998. Although shortcomings of these methods on bulk data,
such as digital images and digital videos, have been pointed out [61], these old algorithms still dominate encryption methods
at all levels (individuals, organizations, companies and governments).

Image encryption has recently become a fertile research area. Many new image encryption algorithms or methods have
been proposed, e.g. chaotic system based image ciphers [6,12,15,16,22,28,29,37,40,42,54,55,63,64], SCAN language based
algorithms [13,14], transform based algorithms [35,38,49,60,65]. The goal of image encryption is to turn an input image,
commonly referred to as plaintext, into an unrecognized or unintelligent image, referred to as ciphertext, using a predeter-
mined method, which is called an image cipher. For adversaries without plaintext knowledge, an image cipher works like
. All rights reserved.
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a symbol source generating pixels in ciphertext. Since the completely random source achieving the maximum randomness
has a uniform distribution, it is desirable that an image cipher has an indistinguishable distribution. Otherwise, the image
cipher is insecure as patterns can be identified through the observation of a sufficiently large number of encrypted images
[11,32,33,56].

Image randomness can be measured using a variety of methods, such as histogram analysis
[6,12,16,22,28,29,35,37,40,42,54,55,57,60,63,64], global Shannon entropy measure [6,12,42,55,64,66], adjacent pixel correla-
tions [6,12,16,35,42,57,64,66]. One major drawback of these conventional techniques is that they provide quantitative rather
than qualitative measures. However, it is qualitative measures that make it is possible to distinguish patterned data from
random-like data. In contrast, many statistical tests that provide quantitative measures (e.g. the Kolmogorov test [50], poker
test [50], gap test [50], autocorrelation test [50], diffusion randomness test [27], and available test suites such as FIPS 140-1
[1] and 140-2 [4]) are designed for either a stream or a block cipher, which is built for one dimensional bit-stream rather
than a two dimensional image. These methods are therefore not directly applicable to image data.

Although the importance of statistical tests for image randomness is obvious, little work has been done on this particular
topic. Refs. [34,62] discussed a randomness measure defined on image edges; however, it is still a quantitative measure
which only gives a randomness score. Statistical tests for the number of changing pixel rate (NPCR) and the unified average
changing intensity (UACI) [6,12,16,35,54,55,57,64,66], two measurements on the changing rate of encrypted images, have
been proposed recently in [59], but they are made for testing randomness between two images rather than on the random-
ness of one image.

In this paper, we develop new statistical tests for image randomness based on the local Shannon entropy measure, which
is a generalization of conventional Shannon entropy. The remainder of the paper is organized as follows: Section 2 gives a
brief review on Shannon entropy, the central limit theorem and random number generators in cryptography; Section 3 intro-
duces a random image generator model, and derives the mean and variance of Shannon entropy for random images; Section
4 defines the local Shannon entropy measure and statistical tests for random images, and optimizes parameters of the local
Shannon entropy measure to attain the best localization capacity; Section 5 compares the theoretical statistics and distribu-
tions with those observed from a large scale simulation with 50,000 random images; Section 6 presents possible applications
of the proposed method for image shuffling and image encryption; and Section 7 concludes the paper.

2. Preliminaries

2.1. Shannon entropy measure and properties

Shannon entropy [47], named after Claude Shannon, was first proposed in 1948. Since then, Shannon entropy has been
widely used in the information sciences. Shannon entropy is a measure of the uncertainty associated with a random variable.
Specifically, Shannon entropy quantifies the expected value of the information contained in a message. The Shannon entropy
of a random variable X can be defined as in Eq. (1), where Pi is defined in Eq. (2) with xi indicating the ith possible value of X
out of n symbols, and Pi denoting the possibility of X = xi.
HðXÞ ¼ HðP1; . . . ; PnÞ ¼ �
Xn

i¼1

Pilog2Pi ð1Þ

Pi ¼ PrðX ¼ xiÞ ð2Þ
Shannon Entropy attains, but is not limited to, the following properties:

(a) Bounded: 0 6 H (X) 6 log2n
(b) Symmetry: H (P1, P2, . . .) = H (P2, P1, . . .) = � � �
(c) Grouping [45]: H (P1, . . . , Pn) = H (P1 + P2, P3, . . . , Pn) + (P1 + P2) H(P1/(P1 + P2), P2/(P1 + P2))

In the context of digital images, an M � N image X can be interpreted as a sample from an L-intensity-scale source that
emitted it. As a result, we can model the source symbol probabilities using the histogram of the image X (the observed im-
age) and generate an estimate of the source entropy [23]. For example, an 8-bit gray image allows L = 256 gray scales from 0
to 255. Additionally, denote the number of pixels within image X at pixel intensity scale l as nl. Then
Pl ¼ PrðX ¼ lÞ ¼ nl=T ð3Þ

where l 2 {0, 1, . . . , L � 1} denotes the intensity scale and T = M � N is the total number of pixels in image X. Therefore, the
Shannon entropy score of image X can be calculated as shown in Eq. (4).
HðXÞ ¼ �
XL�1

l¼1

Pllog2Pl ¼
XL�1

l¼0

nl

T
log2

T
nl

ð4Þ
The theoretical maximum of the Shannon entropy score for an L symbol source is log2L, when each symbol is equally
likely distributed, i.e.
P0 ¼ P1 ¼ � � � ¼ Pl ¼ � � � ¼ PL�2 ¼ PL�1 ¼ 1=L ð5Þ
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Shannon entropy [8,47] has been widely used in image encryption for years as a common measure for information and
uncertainty [17,21,36,39].
2.2. Central limit theorem

Let Y1, Y2, . . . , Yn be a sequence of n independent and identically distributed observations on a random variable Y associ-
ated with a finite mean l and a variance r2. The central limit theorem (CLT) states that the sample mean of these observa-
tions will be approximately normally distributed, with a mean l and a variance r2/n, when the number of samples n is
sufficiently large. Mathematically, the CLT can be stated as follows:
Yn ¼
Xn

i¼1

Yi

n
� N l;r

2

n

� �
; as n!1 ð6Þ
The most important merit of the CLT is that the probability density function (PDF) of Yn is dependent on the mean and var-
iance of the random variable Y. In other words, it is not necessary to know the exact PDF of Y for computing the PDF of Yn, as
long as its mean and variance are known. Heuristically, many statisticians believe that if the sample size n is larger than 30
then it is sufficiently large [41,52], while others suggest larger sample sizes [30], for Example 100 [9].

Instead of using Yn, the random variable Zn defined in Eq. (7) is commonly used in hypothesis tests, where Zn � Nð0;1Þ as
n ?1. The convergence in distribution implies that Eq. (8) is held for arbitrary z 2 R, where U(z) is the cumulative distri-
bution function (CDF) ofNð0;1Þ. Consequently, the statistical test designed on this Z statistic is called the Z-test, where FZn ðzÞ
denotes the actual CDF of Zn
Zn ¼
Yn � l
r=

ffiffiffi
n
p ð7Þ

lim
n!1

PrðZn 6 zÞ ¼ lim
n!1

FZn ðzÞ ¼ UðzÞ ð8Þ
2.3. Random number generators in cryptography

A random number generator (RNG) is a computational algorithm or a physical device that generates a sequence of sym-
bols from some known distribution, which implies that all elements in the sequence should be independent and identically
distributed with a known distribution. Although the distribution of a RNG can be of any type, including Gaussian [31], Multi-
nomial [18] or Poisson [10], the uniform distribution is prefered for RNGs in cryptography [5,20,44,51], as it makes all out-
comes equally likely and implies less population information than non-uniform distributions. Many attacks or cryptanalysis
methods, e.g. [11,32,33,56] can take advantage of non-uniformly distributed ciphertexts.

RNGs can be classified into two groups: pseudo RNGs (PRNGs) and true RNGs (TRNGs), where PRNGs are predetermined
by a set of controllable parameters with completely predictable outputs; and TRNGs are normally dependent on certain
physical phenomena, e.g. atmospheric noise [19] and Johnson noise [25], which can be considered as a set of noncontrollable
parameters with completely unpredictable outputs. However, it is very difficult to distinguish a PRNG from a TRNG by
observing output random number sequences [24].

A random sequence Q = {q1, q2, . . .} from a RNG (either a TRNG or a PRNG) with a uniform distribution on a finite symbol
set S ¼ fs1; s2; . . . ; sLg has the following properties:
Prðqt ¼ s1Þ ¼ Prðqt ¼ s2Þ ¼ � � �Prðqt ¼ sLÞ ¼ 1=L ð9Þ
Prðqt jqsÞ ¼ PrðqsjqtÞ ¼ 1=L ð10Þ
where t and s denotes two sequence elements and t – s. It is easy to verify that the Shannon entropy of a RNG source with a
uniform distribution on L symbols always attains the upper-bound log2L.

Finally, it is worthwhile to note the links between a PRNG and a digital cipher (stream cipher or block cipher). A stream
cipher normally combines a plaintext data stream with a key stream, which is generated from a PRNG [53]. In contrast, a
block cipher itself is normally considered as a cryptographically secure PRNG [43], whose generated sequences also attain
the properties Eqs. (9) and (10).
3. Shannon entropy of a random image

In this section, we first introduce a random image generator in Section 3.1. This random image generator enables us to
generate random images, which share the same statistical properties as securely encrypted images, rendering them indistin-
guishable. In Section 3.3, we derive what would be the theoretical mean and variance of the Shannon entropy for a random
image as defined in Section 3.2. Finally, this section ends with a discussion explaining the theoretically derived means and
variances from Section 3.2 and the connection between those values and the preconditions of the random image generator.



326 Y. Wu et al. / Information Sciences 222 (2013) 323–342
3.1. A random image generator

Since a digital image can be considered as a bit/byte sequence fitting within a specific rectangle, we define a uniformly
random image generator (RIG) in the following way:

Definition 1. A uniformly random image generator is a random number generator which equally likely generates an image
pixel of intensity l out of L allowed intensities (l 2 {0, 1, . . . , L � 1}).

Therefore, each image pixel is then generated independently with the identical uniform distribution as a random se-
quence element from a RNG model as defined in Eqs. (9) and (10). In other words, the following properties are held for a
pixel R(i, j) generated by a RIG.
PrðRði; jÞ ¼ lÞ ¼ 1=L ð11Þ
PrðRði; jÞjRði0; j0ÞÞ ¼ 1=L ð12Þ
where R(i, j) denotes the pixel located at the intersection of the ith row and jth column in R and R(i0, j0) is another pixel dif-
ferent from R(i, j). Equivalently, this indicates that a RIG is also a memory-less source [58]. It is noticeable that a RIG with a
uniform distribution attains the maximum Shannon entropy, i.e. the maximum randomness with the Shannon entropy score
log2L.

3.2. Random images and securely encrypted images

In this paper, a random image is defined as an observed image generated by a RIG as defined previously. Fig. 1 shows ran-
dom images of size 256 � 256 in binary, 8-bit grayscale and color formats. It can be observed that the histograms of these
random images are all uniform-like, this because each image is an observation derived from a RIG.

The same relationship that exists between a PRNG and a digital cipher exists between a RIG and an image cipher. First, a
secure digital cipher is supposed to attain confusion and diffusion properties [48], thus making Eqs. (11) and (12) hold for a
secure image cipher. Second, an image cipher can be considered as a pseudo RIG, because it is completely controlled by ci-
pher key(s) when the used image cipher is known. Therefore, a random image generated from a RIG should also be indistin-
guishable from an encrypted image generated from a secure image cipher. Fig. 2 shows securely encrypted images of size
256 � 256 in the binary, 8-bit grayscale and color formats. It can be seen that these encrypted images indeed look like ran-
dom images in Fig. 1.

Consequently, a statistical test designed for testing the randomness of random images is also applicable to encrypted
images, which are supposed to be statistically indistinguishable from random images if they are encrypted by a secure image
cipher.

3.3. Mean and variance of Shannon entropy for a random image

Consider a random image X as a random variable. This implies the pixels in X satisfy the statistical properties of Eqs. (11)
and (12).

Lemma 1. The number of pixels at scale l out of L possible intensity scales in a random image X of size M � N follows the binomial
distribution of T (T = MN) independent incidents with the success probability 1/L, i.e.
nl � BðT;1=LÞ ð13Þ
Proof. Since any pixel x in the random image X follows the discrete uniform distribution x � Uð0; L� 1Þ, i.e.
Prðx ¼ lÞ ¼ 1=L
we have,
Prðx – lÞ ¼ 1� 1=L ¼ ðL� 1Þ=L
Therefore, any pixel x at intensity level l follows the Bernoulli distribution with success probability 1/L. As a result, the num-
ber of pixels at intensity level l follows the Binomial distribution as
nl � BðT;1=LÞ
i.e.
Prðnl ¼ kÞ ¼
T

k

� �
ðL� 1ÞT�k

LT�

and T

k

�
¼ T!

k!ðT�kÞ! is the binomial coefficient. h



(a) Binary

(b) 8-bit grayscale

(c) Color

Fig. 1. Sample random images.
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(a) Binary

(b) 8-bit grayscale

(c) Color

Fig. 2. Sample encrypted images.
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Corollary 1.
PrðPl ¼ k=TÞ ¼
T

k

� �
ðL� 1ÞT�k

LT
ð14Þ
Proof. True since nl � BðT;1=LÞ and Pl = nl/T. h

In order to find the mean and variance of the Shannon entropy of an observed random image X, i.e. lH(X) and r2
HðXÞ, we first

rewrite the Shannon entropy of X as the sum of entropies from all possible intensity scales, i.e.
HðXÞ ¼
XL�1

l¼0

hl ð15Þ
where hl = �Pl log2Pl denotes the Shannon entropy of intensity scale l. Using Lemma 1 that nl � BðT;1=LÞ, the following sta-
tistics can be obtained:
E½hðlÞ� ¼ E �nl

T
log2

nl

T

h i
¼
XT

nl¼0

nl

T
log2

T
nl
�

T

nl

� �
ðL� 1ÞT�nl

LT ð16Þ

E½hðlÞ2� ¼
XT

nl¼0

nl

T
log2

T
nl

� �2

�
T

nl

� �
ðL� 1ÞT�nl

LT ð17Þ

E½hðlaÞhðlbÞ� ¼
XT

na¼0

XT�na

nb¼0

na

T
log2

T
na

� �
nb

T
log2

T
nb

� �
� T!ðL� 2ÞT�na�nb

na!nb!ðT � na � nbÞ!LT ð18Þ
Subsequently, the mean lH(X) and variance r2
HðXÞ can be derived:
lHðXÞ ¼ E½HðXÞ� ¼ E
XL�1

l¼0

hðlÞ
" #

¼
XL�1

l¼0

E½hðlÞ� ¼ L � E½hðlÞ� ð19Þ
E½HðXÞ2� ¼ E
XL�1

l¼0

hðlÞ
 !2
24 35 ¼ E

XL�1

l¼0

hðlÞ2 þ
XL�1

la¼0

XL�1

lb ¼ 0
lb–la

hðlaÞhðlbÞ

2666664

3777775 ¼ L � E½hðlÞ2� þ LðL� 1Þ � E½hðlaÞhðlbÞ� ð20Þ

r2
HðXÞ ¼ E½HðXÞ2� � ðE½HðXÞ�Þ2 ¼ L � E½hðlÞ2� þ LðL� 1Þ � E½hðlaÞhðlbÞ� � L2 � ðE½hðlÞ�Þ2 ð21Þ
Numerical results for lH(X) and rH(X) using different parameter sets are shown in Table 1. It is clear from Table 1 that for a
random image, lH(X) increases as L increases when T is fixed; lH(X) also increases as T increases when L is fixed. Meanwhile,
rH(X) gets smaller as T increases.

Finally we want to point out that Eqs. (19) and (21) pave the way to the local Shannon entropy measure and tests which
will be discussed in the next section, although they only reveal the mean and variance of H (X) without the exact PDF of H (X).
However, as stated in the CLT, the sample mean of Shannon entropy over n random images, which is the local Shannon en-
tropy measure, follows the Normal distribution with mean lH(X) and variance r2

HðXÞ=n, as long as n is sufficiently large (n P 30).

3.4. Discussion

It is worthwhile to understand the relationship between the derived Shannon entropy statistics of a random image and
the preconditions of a random image (see Eqs. (11) and (12)).

First, the Shannon entropy of a random image is an estimation on that of the RIG which generates this random image.
Because a RIG here is an L-symbol source generating equally likely symbols for each pixel, the Shannon entropy of such a
RIG reaches the maximum randomness log2L. Consequently, it is not surprising that H (X), the Shannon entropy of a random
image X from this RIG, and also an estimation of the Shannon entropy for the RIG, always have a score close to the Shannon
entropy of the source, log2L.

Second, a random image with a larger image size better estimates the source entropy, and thus a random variable of H (X)
has a larger mean and a smaller variance as the size of X increases. This is because a larger observed image means more
pixels, and thus more symbols observed from the image source, the RIG. According to the CLT, the probability of seeing each
symbol from this RIG is then better estimated in the sense that these probabilities approach their true values closer as the
number of image pixels increases. Correspondingly, the estimated source Shannon entropy gets closer to the true source



Table 1
Theoretical mean and standard deviation of Shannon entropy score for a random image.

L = 2 Binary image L = 256 Grayscale image L = 256 Color image

T lH(X) rH(X) T lH(X) rH(X) T lH(X) rH(X)

2 � 2 0.780639062 0.307715375 2 � 2 1.988300234 0.076064119 2 � 2 � 3 3.542339666 0.082640020
4 � 4 0.953361607 0.066187807 4 � 4 3.942064617 0.082851351 4 � 4 � 3 5.407984610 0.079041305
8 � 8 0.988638975 0.016069236 8 � 8 5.765716929 0.076603439 8 � 8 � 3 6.938975236 0.059295884
16 � 16 0.997176704 0.003992777 16 � 16 7.174966353 0.052437999 16 � 16 � 3 7.737771412 0.023253559
32 � 32 0.999295215 0.000996718 32 � 32 7.808756571 0.017246343 32 � 32 � 3 7.939203149 0.005393141
64 � 64 0.999823868 0.000249088 64 � 64 7.954588734 0.004024888 64 � 64 � 3 7.984977322 0.001330526
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Shannon entropy log2L and thus leads to the mean of H (X) approaching closer to log2L with a smaller variances. This phe-
nomenon can be confirmed with Table 1, where lH(X) increases and rH(X) decreases as T the number of pixels increases.

Finally, the derived results hold for any image pulled from an image source that satisfies the preconditions of Eqs. (11)
and (12). Since an encrypted image from a secure cipher is supposed to satisfy these preconditions while an encrypted image
from an insecure cipher is not, we can differentiate encrypted images derived from secure and insecure ciphers using the
results derived above. More details about this application will be presented in the following sections.

4. Local Shannon entropy measure and statistical tests

Conventionally, in the image encryption community, the usage of Shannon entropy for image randomness is to compute
Eq. (4) for a sample image S. This method has been widely adopted in testing the performance of an image cipher
[6,12,42,55,64,66]. In this paper, this conventional usage is referred to as the global Shannon entropy. In contrast, the pro-
posed Shannon entropy measure is referred to as the local Shannon entropy, as it only relies on a series of local blocks in
an image.

4.1. Local Shannon entropy measure

We define the (k, TB)-local Shannon entropy measure with respect to local image blocks using the following method:

� Step 1. Randomly select non-overlapping image blocks S1, S2, . . . , Sk with TB pixels within a test image S of L intensity
scales
� Step 2. For all i 2 {1, 2, . . . , k} compute Shannon entropy H (Sk) via Eq. (4)
� Step 3. Calculate the sample mean of Shannon entropy over these k image blocks S1, S2, . . . , Sk via Eq. (22)
Hk;TB
ðSÞ ¼

Xk

i¼1

HðSiÞ
k

ð22Þ
Consequently, the (k, TB)-local Shannon entropy HðSÞ are used as the measure for describing the randomness over the entire
test image S.

Fig. 3 shows the three steps of the (k,TB)-local entropy measure on a poorly encrypted image, Rabbit, with k = 9 and
TB = 256. As can be seen in Fig. 3d, the local Shannon entropy directly points out the relatively low randomness scores for
image blocks S1, S4, and S8 in the test image, and thus demonstrates the capability of the measure to capture local random-
ness. Further, because the local image blocks are chosen randomly in the local Shannon entropy measure, randomness infor-
mation of a test image is fairly represented in the resulting local Shannon entropy score.

Since this (k, TB)-local Shannon entropy degrades to the global Shannon entropy for a T-pixel image S with k = 1 and TB = T,
the (k, TB)-local Shannon entropy can be considered a generalized form of Shannon entropy, which includes the global Shan-
non entropy. However, this generalization is not trivial: one interpretation of the (k, TB) parameter set is that this parameter
set tunes the localization capacity of the Shannon entropy measure over a test image. A discussion on the parameters of the
(k, TB)-local Shannon entropy can be found in subsequent sections.

4.2. Why local and not global?

Because the local Shannon entropy measures image randomness by computing the sample mean of Shannon entropy over
a number of non-overlapping and randomly selected image blocks, it is able to overcome some known weaknesses of the
global Shannon entropy:

1. Inaccuracy: The global Shannon entropy sometimes fails to measure the true randomness of an image. Unlike global
Shannon entropy, the (k, TB) local Shannon entropy is able to capture local image block randomness a measure that might
not be correctly reflected in the global Shannon entropy score.



(a) Original Image Rabbit (b) Step 1

(c) Step 2 (d) Step 3

Fig. 3. An example of the (k, TB)-local entropy measure for k = 10, TB = 256.

(a) Random (b) Scene (c) Pattern

(d) Averaged local Shannon entropy score

Fig. 4. Global and local Shannon entropy scores of sample images.
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Table 2
Theoretical mean and standard deviation of (k, TB)-local Shannon entropy score on random images.

L = 2 Binary image L = 256 Grayscale image L = 256 Color image

TB lHk;TB
ðRÞ rHk;TB

ðRÞ TB lHk;TB
ðRÞ rHk;TB

ðRÞ TB lHk;TB
ðRÞ rHk;TB

ðRÞ

2 � 2 0.780639062 0.307715375/
ffiffiffi
k
p

2 � 2 1.988300234 0.076064119/
ffiffiffi
k
p

2 � 2 � 3 3.542339666 0.082640020/
ffiffiffi
k
p

4 � 4 0.953361607 0.066187807/
ffiffiffi
k
p

4 � 4 3.942064617 0.082851351/
ffiffiffi
k
p

4 � 4 � 3 5.407984610 0.079041305/
ffiffiffi
k
p

8 � 8 0.988638975 0.016069236/
ffiffiffi
k
p

8 � 8 5.765716929 0.076603439/
ffiffiffi
k
p

8 � 8 � 3 6.938975236 0.059295884/
ffiffiffi
k
p

16 � 16 0.997176704 0.003992777/
ffiffiffi
k
p

16 � 16 7.174966353 0.052437999/
ffiffiffi
k
p

16 � 16 � 3 7.737771412 0.023253559/
ffiffiffi
k
p

32 � 32 0.999295215 0.000996718/
ffiffiffi
k
p

32 � 32 7.808756571 0.017246343/
ffiffiffi
k
p

32 � 32 � 3 7.939203149 0.005393141/
ffiffiffi
k
p

64 � 64 0.999823868 0.000249088/
ffiffiffi
k
p

64 � 64 7.954588734 0.004024888/
ffiffiffi
k
p

64 � 64 � 3 7.984977322 0.001330526/
ffiffiffi
k
p
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2. Inconsistency: The term ‘global’ is commonly inconsistent for images with various sizes, making the global Shannon
entropy unsuitable as a universal measure. However, the (k, TB)-local Shannon entropy is able to measure the image ran-
domness using the same set of parameter regardless of the various sizes of test images and thus provides a relatively fair
comparison for image randomness among multiple images.

3. Low efficiency: The global Shannon entropy measure requires the pixel information of an entire image, which is costly
when the test image is large. However the local entropy measure requires only a portion of the total pixel information.

The first weakness regarding inaccuracy is illustrated in Fig. 4, which shows the global and local Shannon entropy scores
for three classes of 8-bit grayscale images of size 256 � 256: Random, Scene, and Pattern. It should be noted that the global
Shannon entropy score of image Pattern is exactly 8, which is the upper bound for an 8-bit grayscale image and implies image
Pattern is very random-like, although image Pattern is not. In contrast, local Shannon entropy scores of image Pattern directly
point out that this image is not random-like, because its entropy scores are obviously smaller than the corresponding scores of
image Random. This example tells us that an image with a high global entropy score may not be necessarily random-like and
that a random-like image always has high local entropy scores regardless of the used block size for the local measurement.

The second weakness regarding inconsistency is illustrated in Table 1, which shows that the expected Shannon entropy
scores for different image sizes are very different. In general, an image of a larger size tends to have a higher Shannon entropy
score than a smaller size image. Therefore, without considering its size, judging the randomness of an image from its global
Shannon entropy score is pointless. In other words, measuring randomness using global Shannon entropy requires image
size information whereas this is not the case with local Shannon entropy.

The low efficiency issue is straightforward and is addressed empirically in Section 6.

4.3. Hypothesis tests for the (k, TB)-local Shannon entropy measure

As shown in Section 4.1 the (k, TB)-local Shannon entropy is definitely a quantitative measure. In order to make it a qual-
itative measure, we derive hypothesis tests for the (k, TB)-local Shannon entropy measure. This way, we can make a quali-
tative measure on a test image, namely reject or fail to reject a test image as a random image.

Consider the (k, TB)-local Shannon entropy measure on a random image R as a random variable. According to the defini-
tion in Eq. (22), the following equations then hold
1 In t
lHk;TB
ðRÞ ¼ E

Xk

i¼1

HðRiÞ
k

" #
¼ lHðXÞ ð23Þ

r2
Hk;TB

ðRÞ ¼ Var
Xk

i¼1

HðRiÞ
k

" #
¼

r2
HðXÞ

k
ð24Þ
where Ri denotes the ith image block in the random image R1, and lH(X) and rH(X) are the mean and standard deviation of the
Shannon entropy score on a random image X, which has the same number of pixels in the random image block Ri.

Furthermore, this (k, TB)-local Shannon entropy of a random image R actually follows a Gaussian distribution according to
the CLT, as long as k is sufficiently large (k P 30). Namely,
Hk;TB
ðRÞ � N ðlHðXÞ;r

2
HðXÞ=kÞ ð25Þ
where X is a random image of the same format as R and also contains TB pixels. Numerical results of (k, TB)-local Shannon
entropy with respect to various image sizes are given in Table 2.

Consequently, we design the (k, TB)-local entropy hypothesis test for image randomness in the following way:

� Null hypothesis H0: Hk;TB ðSÞ ¼ lHk;TB
ðRÞ, which implies that the test image S is indistinguishable from a random image
he rest of paper, S and R always denotes a general test image and a random image for the (k,TB)-local Shannon entropy measure, respectively.
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� Alternative hypothesis H1: Hk;TB
ðSÞ– lHk;TB

ðRÞ, which implies that the test image S is distinguishable from a random image

Assuming k P 30 holds, the above test is a Z test, because the distribution of H0 is known (see Eq. (25)). As a result, the
test statistic z can be obtained as follows
z ¼
Hk;TB

ðSÞ � lHk;TB
ðRÞ

rHk;TB
ðRÞ

¼
Hk;TB

ðSÞ � lHðXÞ

rHðXÞ=
ffiffiffi
k
p ð26Þ
With respect to the a-level of significance in a Z-test, we calculate critical values h�left and h�right using Eq. (27). Conse-
quently, we fail to reject H0 for a test image S if Hk;TB

ðSÞ 2 h�left ;h
l�
right

h i
otherwise we reject H0.ffiffiffip8
h�left ¼ lHk;TB
ðRÞ �U�1

a=2rHk;TB
ðRÞ ¼ lHðXÞ �U�1

a=2rHðXÞ= k

h�right ¼ lHk;TB
ðRÞ þU�1

a=2rHk;TB
ðRÞ ¼ lHðXÞ þU�1

a=2rHðXÞ=
ffiffiffi
k
p

<: ð27Þ
where U�1 is the inverse cumulative density function of the standard normal distribution Nð0;1Þ.

4.4. Parameter selection

In the (k, TB)-local entropy test, the two parameters play different roles. It is somewhat obvious that parameter k affects the
width of the rejection region of the (k, TB)-local entropy test. As k increases, lHk;TB

ðRÞ remains the same, but rHk;TB
ðRÞ gets smaller,

which implies a wider rejection region. However, since the (k, TB)-local entropy test requires k to be sufficiently large to apply
the CLT, k should be no less than 30. It should be noted that the condition k P 30 can be easily satisfied for most images.

The role of parameter TB is more complex in the sense that both lHk;TB
ðRÞ and rHk;TB

ðRÞ change as it changes. It is also notice-
able that it is TB that defines the local entropy test, because when TB is as large as the number of the entire test image, then
the local entropy test is identical to the global one. However, in contrast, if TB is as small as one pixel, the local entropy test is
pointless, as in this case Hk;TB

ðSÞ ¼ 0, regardless of the test image S. Therefore, it is natural to ask whether there exists some
optimal TB in between these two extremes.

Since there are multiple ways to address the problem, we made the choice to approach it by first considering the two
parameters below:

� Clocal (Capacity to capture local randomness information): This capacity is reduced as TB increases. When TB increases to
the number of pixels in the entire test image, the (k, TB)-local entropy measure becomes the exact global measurement,
and thus does not capture any local randomness information.
� Cscale (Capacity to capture all L levels of intensity scales): This capacity is enhanced as TB increases. Although a local

entropy score is supposed to measure local randomness with TB pixels and L intensity scales, such a measure is inaccurate
when TB	 L, because the number of possible symbols that can be observed within TB is always less than or equal to min
(TB, L). When TB = 1, the (k, TB)-local entropy measure is always 0, and thus completely loses this capacity.

Clocal and Cscale can be modeled as follows, and consequently we can construct a capacity energy function f as shown as
follows:
ClocalðTBÞ ¼ 1=TB

CscaleðTBÞ ¼ Prðsee all L scales in TB pixelsjLÞ
f LðTBÞ ¼ ClocalðTBÞ � CscaleðTBÞ ¼ Pr ðsee all L scales in TB pixelsjLÞ=TB

ð28Þ
This energy function can be interpreted as the capacity to capture all L scales per pixel.
It is worthwhile to note that Pr (see all L scales in TBpixelsjL) can be calculated via Eq. (29) [26], where the random var-

iable X = the number of drawings it takes to get all L intensity scales in Pr (X = tjL).
Prðsee all L scales in TB pixelsjLÞ ¼
XTB

t¼1

PrðX ¼ tjLÞ ð29Þ
PrðX ¼ tjLÞ ¼ 1
Lt

XL

i¼1

ð�1Þi�1 � i �
L

i

� �
� ðL� iÞt�1 ð30Þ
When TB ? 1, Cscale decreases to 0 and thus f L(TB) quickly goes to 0; when TB ?1, Clocal goes to infinity and thus fL(TB) also
approaches 0. As a result, the optimized TL�

B with respect to L intensity scales can be obtained as follows
TL�
B ¼ arg max

TBP1
f LðTBÞ ð31Þ
Fig. 5 shows f L(TB) scores with respect to different L values. As expected, fL(TB) is a unimodal function. More specifically,
TL¼2�
B ¼ 2 ð32Þ

TL¼256�
B ¼ 1936 ð33Þ



Case of Binary Image: L = 2 Case of 8-bit Gray Image (RGB Color Image): L = 256

Fig. 5. TB optimization with respect to different image formats (left column: Cscale; right column: capacity energy).

Table 3
Mean and standard deviation of local Shannon entropy for random images with optimal TB.

Image type L TL�
B

lH(X) rH(X) lHk;TB
ðRÞ rHk;TB

ðRÞ

Binary 2 2 0.500000000 0.500000000 0.500000000 0.500000000/
ffiffiffi
k
p

Grayscale (8-bit) 256 1936 7.902469317 0.008694225 7.902469317 0.008694225/
ffiffiffi
k
p

Color (RGB) 256 1936 7.902469317 0.008694225 7.902469317 0.008694225/
ffiffiffi
k
p

Table 4
Local entropy test reference table for optimized TB.

k a = 0.05 a = 0.01 a = 0.001

hl�
left hl�

right hl�
left hl�

right hl�
left hl�

right

Binary image L ¼ 2; TL¼2�
B ¼ 2

30 0.467333934 0.532666066 0.457069512 0.542930488 0.445157888 0.554842112
40 0.475500450 0.524499550 0.467802134 0.532197866 0.458868416 0.541131584
50 0.480400360 0.519599640 0.474241707 0.525758293 0.467094733 0.532905267
60 0.483666967 0.516333033 0.478534756 0.521465244 0.472578944 0.527421056
70 0.486000257 0.513999743 0.481601219 0.518398781 0.476496238 0.523503762
80 0.487750225 0.512249775 0.483901067 0.516098933 0.479434208 0.520565792
90 0.489111311 0.510888689 0.485689837 0.514310163 0.481719296 0.518280704

100 0.490200180 0.509799820 0.487120853 0.512879147 0.483547366 0.516452634
110 0.491091073 0.508908927 0.488291685 0.511708315 0.485043060 0.514956940
120 0.491833483 0.508166517 0.489267378 0.510732622 0.486289472 0.513710528
130 0.492461677 0.507538323 0.490092964 0.509907036 0.487344128 0.512655872
140 0.493000129 0.506999871 0.490800610 0.509199390 0.488248119 0.511751881
150 0.493466787 0.506533213 0.491413902 0.508586098 0.489031578 0.510968422

8-bit Grayscale/RBG color image L ¼ 2; TL¼256�
B ¼ 1936

30 7.901901305 7.903037329 7.901722822 7.903215812 7.901515698 7.903422936
40 7.902043308 7.902895326 7.901909446 7.903029188 7.901754103 7.903184531
50 7.902128510 7.902810124 7.902021420 7.902917214 7.901897145 7.903041489
60 7.902185311 7.902753323 7.902096070 7.902842564 7.901992507 7.902946127
70 7.902225883 7.902712751 7.902149391 7.902789243 7.902060623 7.902878011
80 7.902256312 7.902682322 7.902189382 7.902749252 7.902111710 7.902826924
90 7.902279980 7.902658654 7.902220485 7.902718149 7.902151444 7.902787190

100 7.902298913 7.902639721 7.902245369 7.902693265 7.902183231 7.902755403
110 7.902314405 7.902624229 7.902265728 7.902672906 7.902209239 7.902729395
120 7.902327314 7.902611320 7.902282693 7.902655941 7.902230912 7.902707722
130 7.902338237 7.902600397 7.902297049 7.902641585 7.902249251 7.902689383
140 7.902347600 7.902591034 7.902309354 7.902629280 7.902264970 7.902673664
150 7.902355715 7.902582919 7.902320018 7.902618616 7.902278593 7.902660041
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Table 3 gives the required statistics for local entropy tests with respect to image types and Table 4 provides acceptance
intervals of (k, TB)-local entropy tests under various significance levels with respect to parameter k.
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5. Simulation results

In this section, we compare the theoretical distributions and statistics derived in previous sections to those observed from
a random image source. Specifically speaking,

� Theoretical statistics of a random image in Table 1 vs. observed ones
� Theoretical distribution of the (k, TB)-local entropy score for random images vs. observed distribution

All simulations are performed under the environment of MATLAB r2011a using built-in functions.

5.1. Estimated statistics from observed random images

Table 5 shows the mean and standard deviations of 50,000 observed sample images S(1), S(2), . . . , S(50,000) generated from
the MATLAB uniform RNG, where S(i) denotes the ith sample out of 50,000. The sample mean and the sample standard devi-
ation for each parameter setting are calculated from 50,000 observations using Eqs. (34) and (35), respectively. It is notice-
able that estimated values are very close to theoretical values in Table 1
Table 5
Observe

L = 2

T

2 � 2
4 � 4
8 � 8
16 �
32 �
64 �

Table 6
Mean s

L = 2

T

2 � 2
4 � 4
8 � 8
16 �
32 �
64 �
dlHðSÞ ¼
X50;000

i¼1

HðSðiÞÞ=50;000 ð34Þ

drHðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX50;000

i¼1
HðSiÞ

� �2
� 50; 000ðdlHðSÞ Þ

2
=49;999

r
ð35Þ
Table 6 tabulates a quantization of the errors between Tables 1 and 5 using mean square error (MSE) as shown in Eq. (36).
Symbol ĥ is the estimated value of the true parameter h. In our case, ĥ is dlHðSÞ or drHðSÞ and h is the corresponding lH(X) or rH(X)

under the same image settings in Table 1. As seen in this table, the observed statistics from a random image source match
very well with those we derived.
MSEðĥÞ ¼ E ðĥ� hÞ2
� �

ð36Þ
5.2. Observed distribution of z statistic in the (k, TB)-local entropy test

We showed earlier that the test statistic z ¼
Hk;TB

ðSÞ�l
Hk;TB

ðRÞ

r
Hk;TB

ðRÞ
follows the standard Normal distribution, i.e. z � Nð0;1Þ, where

Hk;TB ðSÞ and Hk;TB ðRÞ are (k,TB)-local entropy scores for a test image S and a random image R (see Table 2 for details).

We construct an observed distribution about ẑ which is the normalized histogram of
Hk;TB

ðSðiÞÞ�l
Hk;TB

ðRÞ

r
Hk;TB

ðRÞ
using 256 bins, where

S(i) denotes the ith observed images from the MATLAB RNG and 1 6 i 6 50,000. Fig. 6 shows the estimated distribution ẑ and
d mean and standard deviation of Shannon entropy scores for random images.

Binary image L = 256 Grayscale image L = 256 Color image

dlHðSÞ drHðSÞ T dlHðSÞ drHðSÞ T dlHðSÞ drHðSÞ

0.779166957 0.308881174 2 � 2 1.988628677 0.075070562 2 � 2 � 3 3.541664155 0.083632601
0.953636046 0.065588142 4 � 4 3.942070485 0.082578193 4 � 4 � 3 5.408002228 0.079179351
0.988651881 0.016031081 8 � 8 5.765586044 0.076379599 8 � 8 � 3 6.938676283 0.058889500

16 0.997184215 0.003984394 16 � 16 7.174563315 0.052355799 16 � 16 � 3 7.737746839 0.023312601
32 0.999289182 0.001007253 32 � 32 7.808835357 0.017273323 32 � 32 � 3 7.939155968 0.005428824
64 0.999823294 0.000250619 64 � 64 7.954594365 0.004022400 64 � 64 � 3 7.984975098 0.001335346

quare error between theoretical statistics in Table 1 and observed statistics in Table 5.

Binary image L = 256 Grayscale image L = 256 Color image

MSEðdlHðSÞ Þ MSEðdrHðSÞ Þ T MSEðdlHðSÞ Þ MSEðdrHðSÞ Þ T MSEðdlHðSÞ Þ MSEðdrHðSÞ Þ

2.16709E�006 1.35909E�006 2 � 2 1.07874E�007 9.87154E�007 2 � 2 � 3 4.56316E�007 9.85216E�007
7.53167E�008 3.59597E�007 4 � 4 3.44258E�011 7.46151E�008 4 � 4 � 3 3.10404E�010 1.90566E�008
1.66555E�010 1.45580E�009 8 � 8 1.71308E�008 5.01041E�008 8 � 8 � 3 8.93732E�008 1.65148E�007

16 5.64146E�011 7.02887E�011 16 � 16 1.62439E�007 6.75684E�009 16 � 16 � 3 6.03824E�010 3.48602E�009
32 3.63932E�011 1.10991E�010 32 � 32 6.20723E�009 7.27957E�010 32 � 32 � 3 2.22599E�009 1.27331E�009
64 3.29605E�013 2.34526E�012 64 � 64 3.17103E�011 6.19361E�012 64 � 64 � 3 4.94678E�012 2.32330E�011



Case of binary images: L = 2, T
B
 = 2, k = 100

Sample percentage out of α  confidence interval L = 2, T
B
= 2

Case of 8-bit grayscale or RGB image): L = 256, T
B
 = 1936, k = 100

Sample percentage out of α  confidence interval L = 256, T
B
 = 1936

Fig. 6. Observed distribution of (k, TB)-local entropy test statistic vs. theoretical distribution z � Nð0;1Þ.

Input: 256 × 256 Tufts Logo I

U16×16
p−w (I) − (U32×32

p w I) U64×64
p−w (I) U128×128

p−w (I)

U128×128
r−c−w (I)U64×64

r−c−w(I)U32×32
r−c−w(I)U16×16

r−c−w(I)

Fig. 7. Image shuffling results.
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the theoretical distribution of z for the (k, TB)-local entropy test, where the first row shows the observed ẑ vs. the standard
normal distribution, with respect to the optimized TB = 2 for binary images and TB = 1936 for grayscale or RGB images for a
fixed number of samples k = 100; and the second row shows the sample percentage out of the a-level confidence interval for
k = 30, 40, . . . , 150, with respect to a = 0.05, 0.01, 0.001 (see Table 4). As seen in Fig. 6, the observed distribution ẑ is very
close to the standard Normal distribution, which is a conclusion discussed earlier; and the actual distribution tails, i.e.

Pr jẑj > U�1
a=2

� �
are close to their theoretical values. Additionally, as the number of image blocks k in the (k, TB)-local entropy

test increases, Pr jẑj > U�1
a=2

� �
gets closer to zero.



Table 7
Pixel randomness for shuffled images in Fig. 7.

Images FIPS 140-2 tests Local entropy score Global entropy score

Monobit Poker Run Long run

Length of the run

1 2 3 4 5 P6 Mean Std

I 0 bit 11299 2913.984 106 131 109 36 42 280 110 0.4576711 0.3697290 0.95995162
1 bit 8701 53 70 59 54 73 395

U16�16
p�w ðIÞ 0 bit 11244 2386.291 1371 530 292 137 101 285 82 0.5498039 0.3324658 0.9599516

1 bit 8756 1238 565 309 169 84 352

U32�32
p�w ðIÞ 0 bit 11251 695.8784 1774 830 499 239 184 461 7 0.6660959 0.3168008 0.9599516

1 bit 8749 2232 828 370 199 113 246

U64�64
p�w ðIÞ 0 bit 9411 869.2224 2354 1050 512 263 155 218 0 0.7723314 0.2896868 0.9599516

1 bit 10589 2105 1112 550 298 165 323

U128�128
p�w ðIÞ 0 bit 5872 4582.874 2897 856 259 79 26 6 0 0.8728581 0.0552799 0.9599516

1 bit 14128 1174 862 592 458 315 722

U16�16
r�c�wðIÞ 0 bit 11235 2802.157 1137 348 146 114 26 222 97 0.5399521 0.3266322 0.9599516

1 bit 8765 857 481 190 122 43 301

U32�32
r�c�wðIÞ 0 bit 11179 822.0224 1457 476 212 138 67 339 83 0.6431998 0.3261251 0.9599516

1 bit 8821 1259 610 157 190 119 355

U64�64
r�c�wðIÞ 0 bit 9917 377.1584 1535 600 302 115 112 348 57 0.7548611 0.3052360 0.9599516

1 bit 10083 1476 574 338 109 139 375

U128�128
r�c�w ðIÞ 0 bit 5370 10966.144 1957 714 384 79 56 34 0 0.8508929 0.1121833 0.9599516

1 bit 14630 1075 752 449 269 156 524

(a)Tendencyof T = #0bits / #1bits (b) Tendency of H100,256(S )

Fig. 8. Randomness test for image shuffling.

Y. Wu et al. / Information Sciences 222 (2013) 323–342 337
6. Applications to image encryption

In this section, we demonstrate two applications of the (k, TB)-local Shannon entropy measure, where the first one uses
the local Shannon entropy measure to evaluate the image shuffling performance whereas the global entropy measure is inef-
fective, and the second one uses the derived (k, TB)-local Shannon entropy test to evaluate the performance of various image
ciphers and compares computational costs of the global and local Shannon entropy measures.

6.1. Evaluating pixel randomness for image shuffling

Generally speaking, a pixel (-wise) shuffling algorithm for image encryption can be defined as in Eq. (37), where I and O
denote input and output images respectively; O(i, j) indicates the pixel located at intersection of the ith row and the jth col-
umn in the output image O; U(�) is a general image shuffling algorithm; erc

P is a pixel permutation. Additionally, if Eq. (38)
holds, that is if erc

P is the combination of a row permutation er
P and a column permutation ec

P, then a pixel (-wise) shuffling
is equivalent to a row-column (-wise) shuffling. As its definition implies, a shuffling algorithm does not change the intensity
level for any pixel, but shuffles the positions of pixels.
Oði; jÞ ¼ UðIÞ ¼ I erc
Pði; jÞ

� �
ð37Þ

I erc
Pði; jÞ

� �
¼ I er

PðiÞ; ec
PðjÞ

� �
ð38Þ



Fig. 9. Selected images in USC-SIPI Miscellaneous dataset.

Table 8
Global Shannon entropy for encrypted images.

File Image information Global Shannon entropy of encrypted images

Description Size Type bmpPacker I-Cipher 3DCat Sudoku

5.1.09 Moon surface 256 � 256 Gray 7.8581 7.9990 7.9972 7.9972
5.1.10 Aerial 256 � 256 Gray 7.8581 7.9991 7.9975 7.9970
5.1.11 Airplane 256 � 256 Gray 7.8586 7.9991 7.9972 7.9974
5.1.12 Clock 256 � 256 Gray 7.8574 7.9992 7.9970 7.9974
5.1.13 Resolution chart 256 � 256 Gray 6.1780 7.9990 7.9928 7.9947
5.1.14 Chemical plant 256 � 256 Gray 7.8562 7.9990 7.9973 7.9970
5.2.08 Couple 512 � 512 Gray 7.9911 7.9998 7.9991 7.9993
5.2.09 Aerial 512 � 512 Gray 7.9915 7.9998 7.9993 7.9993
5.2.10 Stream and bridge 512 � 512 Gray 7.9912 7.9998 7.9993 7.9992
5.3.01 Man 1024 � 1024 Gray 7.9993 8.0000 7.9996 7.9998
5.3.02 Airport 1024 � 1024 Gray 7.9993 7.9999 7.9998 7.9998
7.1.01 Truck 512 � 512 Gray 7.9916 7.9997 7.9993 7.9992
7.1.02 Airplane 512 � 512 Gray 7.9915 7.9998 7.9993 7.9990
7.1.03 Tank 512 � 512 Gray 7.9914 7.9998 7.9993 7.9992
7.1.04 Car and APCs 512 � 512 Gray 7.9917 7.9998 7.9993 7.9992
7.1.05 Truck and APCs 512 � 512 Gray 7.9910 7.9997 7.9993 7.9992
7.1.06 Truck and APCs 512 � 512 Gray 7.9921 7.9997 7.9992 7.9993
7.1.07 Tank 512 � 512 Gray 7.9914 7.9998 7.9993 7.9992
7.1.08 APC 512 � 512 Gray 7.9915 7.9998 7.9991 7.9991
7.1.09 Tank 512 � 512 Gray 7.9915 7.9998 7.9993 7.9992
7.1.10 Car and APCs 512 � 512 Gray 7.9917 7.9997 7.9993 7.9992
7.2.01 Airplane (U-2) 1024 � 1024 Gray 7.9993 7.9999 7.9998 7.9997
Boat.512 Fishing boat 512 � 512 Gray 7.9914 7.9997 7.9993 7.9993
Elaine.512 Girl (Elaine) 512 � 512 Gray 7.9914 7.9998 7.9993 7.9992
Gray21.512 21 level step wedge 512 � 512 Gray 7.5291 7.9998 7.9992 7.9997
Numbers.512 256 level test pattern 512 � 512 Gray 7.9916 7.9997 7.9994 7.9993
Ruler.512 Pixel ruler 512 � 512 Gray 5.2343 7.9998 6.9995 7.9943
Testpat.1k General test pattern 1024 � 1024 Gray 7.5425 7.9999 7.9820 7.9995

Mean 7.7726 7.9996 7.9624 7.9986
Std 0.6102 0.0003 0.1887 0.0014
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A shuffling algorithm can also be a block cipher, which shuffles an image block by block.
Fig. 7 shows image shuffling results using the pixel (-wise) shuffling and row-column (-wise) shuffling. For simplicity,

consider a shuffled image I using a pixel (-wise) shuffling scheme with an M-by-N block size:



Table 9
Local Shannon entropy test for encrypted images (k = 30, TB = 1936, a = 0.05).

Filename Local Shannon entropy of encrypted images

bmpPacker I-Cipher 3DCat Sudoku

Score P value Score P value Score P value Score P value

5.1.09 7.7616 0.0000 7.8994 0.0519 7.9032 0.6334 7.9035 0.5305
5.1.10 7.7640 0.0000 7.9009 0.3168 7.9021 0.8302 7.9042 0.2774
5.1.11 7.7673 0.0000 7.9032 0.6543 7.9034 0.5564 7.9092 0.0000
5.1.12 7.7619 0.0000 7.9046 0.1755 7.9038 0.3943 7.9075 0.0015
5.1.13 6.0686 0.0000 7.8996 0.0726 7.7877 0.0000 7.9240 0.0000
5.1.14 7.7593 0.0000 7.9003 0.1626 7.9012 0.4073 7.8985 0.0116
5.2.08 7.8954 0.0000 7.9002 0.1483 7.9012 0.4221 7.9026 0.9401
5.2.09 7.8940 0.0000 7.9011 0.4002 7.9043 0.2440 7.9049 0.1249
5.2.10 7.8947 0.0000 7.9041 0.3084 7.9015 0.5336 7.9028 0.8142
5.3.01 7.9027 0.8823 7.9023 0.9170 7.8226 0.0000 7.9041 0.3136
5.3.02 7.9048 0.1437 7.9031 0.7074 7.8714 0.0000 7.8978 0.0034
7.1.01 7.8947 0.0000 7.9015 0.5299 7.9012 0.4300 7.9014 0.4809
7.1.02 7.8957 0.0000 7.9050 0.1170 7.8962 0.0001 7.9036 0.4741
7.1.03 7.8962 0.0001 7.9049 0.1303 7.9032 0.6664 7.9019 0.7432
7.1.04 7.8957 0.0000 7.9025 0.9830 7.9009 0.3183 7.8991 0.0337
7.1.05 7.8905 0.0000 7.9012 0.4144 7.9033 0.6161 7.8993 0.0477
7.1.06 7.8944 0.0000 7.9021 0.8397 7.9053 0.0761 7.9039 0.3596
7.1.07 7.8972 0.0009 7.9071 0.0035 7.9030 0.7303 7.9024 0.9406
7.1.08 7.8928 0.0000 7.9016 0.5652 7.8945 0.0000 7.9003 0.1780
7.1.09 7.8963 0.0001 7.9040 0.3373 7.9040 0.3248 7.9000 0.1164
7.1.10 7.8958 0.0000 7.9021 0.8344 7.9017 0.6232 7.9015 0.5312
7.2.01 7.9023 0.9143 7.9031 0.7046 7.8690 0.0000 7.8976 0.0023
Boat.512 7.8927 0.0000 7.9025 0.9644 7.9004 0.1921 7.9051 0.0975
Elaine.512 7.8962 0.0001 7.9003 0.1663 7.9029 0.7968 7.9027 0.9015
Gray21.512 7.4038 0.0000 7.9026 0.9141 7.8895 0.0000 7.9202 0.0000
Numbers.512 7.8963 0.0001 7.9019 0.7185 7.8976 0.0020 7.9020 0.7679
Ruler.512 4.9873 0.0000 7.9020 0.7794 6.8212 0.0000 7.8243 0.0000
Testpat.1 k 6.6193 0.0000 7.9031 0.6875 7.7283 0.0000 7.8668 0.0000
Mean ± Std 7.6401 ± 0.6646 7.9024 ± 0.0018 7.8473 ± 0.2052 7.8997 ± 0.0174
# Images passed a-level test 3 27 18 17
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� UM�N(I) gets more random-like as the block size M � N increases
� UM�N

p�w ðIÞ is more random-like than UM�N
r�c�wðIÞ

Table 7 shows the image pixel randomness measured by the FIPS 140-2 tests [4], local Shannon entropy and global Shan-
non entropy for shuffled images in Fig. 7. The global Shannon entropy fails to differentiate image randomness under various
shuffling methods. This is because global Shannon entropy measures randomness over the entire image, which remains the
same regardless of shuffling methods. The local Shannon entropy measures image randomness with 100 local image blocks
each with 256 pixels, i.e. k = 100, TB = 256. The FIPS 140-2 tests require a bit-string of length 20,000, which is given as the first
20,000 pixels in a shuffled image. It is important to note that the local Shannon entropy scores give the same conclusions
about the pixel randomness of shuffled images in Fig. 7 as the conclusions derived earlier, from a human visual perspective.
Although similar conclusions can be drawn using the ratios of 0-bit to 1-bit in the Monobit test of FIPS 140-2 test suite, it is an
indirect approach, and not as salient as the results from the local Shannon entropy measure. Fig. 8 compares the trends given
by the Monobit test and the local Shannon entropy measure.

6.2. Evaluating image randomness for image encryption

In this section, the local Shannon entropy measure is applied to encrypted images from four image ciphers: commercial im-
age ciphers I-Cipher2, bmpPacker3, and image encryption algorithms 3DCat [16] and Sudoku [60]. It is worthwhile to note that the
reason why the local Shannon entropy test is able to differentiate an encrypted image generated by a secure cipher from those gen-
erated by a insecure cipher is that a secure image cipher attains the confusion and diffusion properties [48], which implies that it
could be a pseudo RIG. Therefore, the proposed local Shannon entropy test for random images is applicable to encrypted images.

We first selected 28 original images from the USC-SIPI image database4 (see Fig. 9) and then encrypted these images using
the four image ciphers/algorithms. Finally, we applied the global and (30,1936)-local Shannon entropy measures to all encrypted
images and obtained Tables 8 and 9.
2 I-Cipher is a product of Ambitware Inc., available at http://www.ambitware.com/ under product page as the date of 07/19/2012.
3 bmpPacker is written by Jens G̈odeke, available at http://www.jens-goedeke.eu/tools/bmppacker/ as the date of 07/19/2012.
4 A public image database distributed by the University of Southern California, available at http://sipi.usc.edu/database/ as the date of 07/19/2012.

http://www.ambitware.com/
http://www.jens-goedeke.eu/tools/bmppacker/
http://sipi.usc.edu/database/


Fig. 10. Complexity comparisons between the local and the global Shannon entropy measure.
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Comparing Tables 8 and 9, it can be observed that although the performance of the four ciphers in the global and local
Shannon entropy measures gives the same ranking, I-Cipher > Sudoku > 3DCat > bmpPacker, the global Shannon entropy mea-
sure shows the performance of Sudoku to be much closer to that of I-Cipher than to that of 3DCat, while the local Shannon
entropy test indicates that this conclusion may be wrong, in the sense that 3DCat has an even better acceptance rate than
Sudoku. This shows the importance of the qualitative analysis provided by the local Shannon entropy test. Finally, we com-
pare the number of required image pixels for the global and local Shannon entropy tests in Fig. 10, which clearly shows that
the global Shannon entropy measure requires a different number of pixels for different images, but always much more than
those required by the local Shannon entropy measure.
7. Conclusions

In this paper, we have introduced the concept of the (k, TB)-local Shannon entropy measure for image randomness, which
includes the global Shannon entropy as a special case. The proposed (k, TB) � local Shannon entropy measure is defined on k
local image blocks with TB pixels and computes the sample mean of the Shannon entropy in each image block. Therefore, the
proposed local Shannon entropy measure.

1. is able to measure image randomness by quantizing the captured local randomness information;
2. requires a fewer number of image pixels to compute an entropy score and thus is faster than the global Shannon entropy

measure;
3. allows fair randomness comparisons between images of different sizes.

Furthermore, we have derived the hypothesis tests of the (k, TB)-local Shannon entropy measure for random images, pro-
viding a qualitative measure to a test image. Consequently, the (k, TB)-local Shannon entropy measure can be directly used to
test whether a test image is random-like by simply comparing an observed score to a theoretical one.

Our simulation results have demonstrated that the estimated statistics and observed distributions of the local Shannon
entropy from 50,000 random image samples fit our proposed mathematical model very well. Finally, we showed possible
applications of the local Shannon entropy measure in image shuffling and image encryption. Our tested results showed that
the proposed local Shannon entropy is a better measure for image shuffling than those available in FIPS 140-2, and that the
local Shannon entropy scores on various shuffled images also reflect human intuition. Moreover, the test results of local
Shannon entropy scores imply that many image ciphers/algorithms are not as random-like as claimed by their authors. Three
out of four tested image ciphers actually have much lower local Shannon entropy scores than expected for securely en-
crypted images.

One possible remedy to avoid producing these poorly encrypted images is to use the local Shannon entropy test as a qual-
ity control device in a feedback encryption system: if an encrypted image fails to pass the local Shannon entropy test, then it
should be sent back to the cipher and be encrypted again. In this manner, the local Shannon entropy test would ensure that
all encrypted images processed by an image cipher are random-like and indistinguishable from random images.
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